If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-536=0
a = 2; b = 1; c = -536;
Δ = b2-4ac
Δ = 12-4·2·(-536)
Δ = 4289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4289}}{2*2}=\frac{-1-\sqrt{4289}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4289}}{2*2}=\frac{-1+\sqrt{4289}}{4} $
| 4(t-3)=2(t+2) | | -9=3(p+1) | | 81(3^x)=9+9^x+1 | | (1/3)^2x=243 | | -7+9y=-57 | | (2^2x+3)+4=33(2^x) | | (2^2x+3)4=33(2^x) | | -16+8y=39 | | 51-x=34 | | 4(x+2)+2(x-4)=18 | | h/5-1/10=1/2 | | 9p+3p=14+6+4 | | x=3x=108 | | 0.2x+1.4=3.4 | | Y²-16y+63=0 | | 7/10xx=280 | | 5x—11=-16 | | 30=3x/4+6 | | 2x+1=x=7 | | -3-x=1+3x | | 5x=10x+6 | | y/15=-15/45y= | | y/15=-15/45 | | 3m-18=6 | | 2(15+x)=5x+45 | | 180-(2x+30)=41 | | 34–5(p–1)=4 | | 0=9-6m-19+10m | | 6x20=30 | | 0=3+-0.25x | | 7-3x=5-16x+11+4x | | 6p+8=68 |